467 research outputs found

    Cold Dark Matter Substructure and Galactic Disks I: Morphological Signatures of Hierarchical Satellite Accretion

    Get PDF
    (Abridged) We conduct a series of high-resolution, dissipationless N-body simulations to investigate the cumulative effect of substructure mergers onto thin disk galaxies in the context of the LCDM paradigm of structure formation. Our simulation campaign is based on a hybrid approach. Substructure properties are culled directly from cosmological simulations of galaxy-sized cold dark matter (CDM) halos. In contrast to what can be inferred from statistics of the present-day substructure populations, accretions of massive subhalos onto the central regions of host halos, where the galactic disk resides, since z~1 should be common occurrences. One host halo merger history is subsequently used to seed controlled numerical experiments of repeated satellite impacts on an initially-thin Milky Way-type disk galaxy. We show that these accretion events produce several distinctive observational signatures in the stellar disk including: a ring-like feature in the outskirts; a significant flare; a central bar; and faint filamentary structures that (spuriously) resemble tidal streams. The final distribution of disk stars exhibits a complex vertical structure that is well-described by a standard ``thin-thick'' disk decomposition. We conclude that satellite-disk encounters of the kind expected in LCDM models can induce morphological features in galactic disks that are similar to those being discovered in the Milky Way, M31, and in other disk galaxies. These results highlight the significant role of CDM substructure in setting the structure of disk galaxies and driving galaxy evolution. Upcoming galactic structure surveys and astrometric satellites may be able to distinguish between competing cosmological models by testing whether the detailed structure of galactic disks is as excited as predicted by the CDM paradigm.Comment: Accepted version to appear in ApJ, 24 pages, 8 figures, LaTeX (uses emulateapj.cls). Comparison between the simulated ring-like features and the Monoceros ring stellar structure in the Milky Way performed; conclusions unaltere

    Density Profiles of Cold Dark Matter Substructure: Implications for the Missing Satellites Problem

    Full text link
    The structural evolution of substructure in cold dark matter (CDM) models is investigated combining ``low-resolution'' satellites from cosmological N-body simulations of parent halos with N=10^7 particles with high-resolution individual subhalos orbiting within a static host potential. We show that, as a result of mass loss, convergence in the central density profiles requires the initial satellites to be resolved with N=10^7 particles and parsec-scale force resolution. We find that the density profiles of substructure halos can be well fitted with a power-law central slope that is unmodified by tidal forces even after the tidal stripping of over 99% of the initial mass and an exponential cutoff in the outer parts. The solution to the missing-satellites problem advocated by Stoehr et al. in 2002 relied on the flattening of the dark matter (DM) halo central density cusps by gravitational tides, enabling the observed satellites to be embedded within DM halos with maximum circular velocities as large as 60 km/s. In contrast, our results suggest that tidal interactions do not provide the mechanism for associating the dwarf spheroidal satellites (dSphs) of the Milky Way with the most massive substructure halos expected in a CDM universe. We compare the predicted velocity dispersion profiles of Fornax and Draco to observations, assuming that they are embedded in CDM halos. Models with isotropic and tangentially anisotropic velocity distributions for the stellar component fit the data only if the surrounding DM halos have maximum circular velocities in the range 20-35 km/s. If the dSphs are embedded within halos this large then the overabundance of satellites within the concordance LCDM cosmological model is significantly alleviated, but this still does not provide the entire solution.Comment: Accepted for publication in ApJ, 17 pages, 9 figures, LaTeX (uses emulateapj5.sty

    The formation of ultra-compact dwarf galaxies and nucleated dwarf galaxies

    Get PDF
    Ultra-compact dwarf galaxies (UCDs) have similar properties as massive globular clusters or the nuclei of nucleated galaxies. Recent observations suggesting a high dark matter content and a steep spatial distribution within groups and clusters provide new clues as to their origins. We perform high-resolution N-body/smoothed particle hydrodynamics simulations designed to elucidate two possible formation mechanisms for these systems: the merging of globular clusters in the centre of a dark matter halo, or the massively stripped remnant of a nucleated galaxy. Both models produce density profiles as well as the half-light radii that can fit the observational constraints. However, we show that the first scenario results to UCDs that are underluminous and contain no dark matter. This is because the sinking process ejects most of the dark matter particles from the halo centre. Stripped nuclei give a more promising explanation, especially if the nuclei form via the sinking of gas, funnelled down inner galactic bars, since this process enhances the central dark matter content. Even when the entire disc is tidally stripped away, the nucleus stays intact and can remain dark matter dominated even after severe stripping. Total galaxy disruption beyond the nuclei only occurs on certain orbits and depends on the amount of dissipation during nuclei formation. By comparing the total disruption of cold dark matter subhaloes in a cluster potential, we demonstrate that this model also leads to the observed spatial distribution of UCDs which can be tested in more detail with larger data set

    Atmospheric effects of volcanic eruptions as seen by famous artists and depicted in their paintings

    No full text
    International audiencePaintings created by famous artists, representing sunsets throughout the period 1500?1900, provide proxy information on the aerosol optical depth following major volcanic eruptions. This is supported by a statistically significant correlation coefficient (0.8) between the measured red-to-green ratios of a few hundred paintings and the dust veil index. A radiative transfer model was used to compile an independent time series of aerosol optical depth at 550 nm corresponding to Northern Hemisphere middle latitudes during the period 1500?1900. The estimated aerosol optical depths range from 0.05 for background aerosol conditions, to about 0.6 following the Tambora and Krakatau eruptions and cover a period practically outside of the instrumentation era

    Comparative breeding ecology of the little egret (Egretla g. garzetla) in the Axios delta (Greece) and the Camargue (France)

    Get PDF
    Des données sur la biologie de reproduction de l'Aigrette garzette (Egretta garzetta) sont comparées entre deux zones humides méditerranéennes d'importance internationale pour les oiseaux d'eau: la Camargue en France et le delta de l'Axios en Grèce. Pendant l'incubation et l'élevage des poussins, les aigrettes de Camargue s'alimentent principalement dans les marais d'eau douce et, dans une moindre mesure, dans les lagunes d'eau saumâtre et salée. Dans l'Axios, les rizières constituent des lieux d'alimentation particulièrement importants, les milieux d'eau saumâtre et salée se plaçant en deuxième position. Les différences dans l'exploitation des divers types de milieux d'alimentation apparaissent dans le régime des poussins. En Camargue, les poissons d'eau douce constituent l'essentiel (en nombre) de leur alimentation alors qu'en Grèce, le régime est surtout composé d'invertébrés et de tétards provenant des rizières ainsi que de poissons d'eau salée. La taille des pontes est significativement plus élevée dans l'Axios qu'en Camargue. Ce résultat pourrait refléter une situation trophique favorable offerte par les marais salants côtiers de l'Axios, principaux milieux exploités par les aigrettes pendant la saison pré-nuptiale, avant la mise en eau des rizières. En Camargue, les nichées sont significativement plus élevées que dans l'Axios, une proportion plus élevée de nichées de quatre poussins ayant été enregistrée en France. De plus, à l'époque où les poussins ont besoin d'un maximum de nourriture pour survivre, vers deux semaines, ceux de Camargue sont en meilleure condition que ceux de Grèce. Par conséquent, à partir d'une ponte moins élevée que celle enregistrée dans l'Axios, les aigrettes de Camargue élèvent plus de jeunes qui sont en meilleure condition à l'époque cruciale de l'élevage. Ces différences dans le succès de la reproduction sont liées à une situation trophique très favorable en Camargue en période d'élevage. Dans l'Axios, il est essentiel que les rizières soient intégrées dans les programmes futurs de conservation de cette importante zone humide

    Central mass and luminosity of Milky Way satellites in the LCDM model

    Full text link
    It has been pointed out that the Galactic satellites all have a common mass around 1e7 Msun within 300 pc (M03), while they span almost four order of magnitudes in luminosity (Mateo et al. 1993, Strigari et al. 2008). It is argued that this may reflect a specific scale for galaxy formation or a scale for dark matter clustering. Here we use numerical simulations coupled with a semi-analytic model for galaxy formation, to predict the central mass and luminosity of galactic satellites in the LCDM model. We show that this common mass scale can be explained within the Cold Dark Matter scenario when the physics of galaxy formation is taken into account. The narrow range of M03 comes from the narrow distribution of circular velocities at time of accretion (peaking around 20 km/s) for satellites able to form stars and the not tight correlation between halo concentration and circular velocity. The wide range of satellite luminosities is due to a combination of the mass at time of accretion and the broad distribution of accretion redshifts for a given mass. This causes the satellites baryonic content to be suppressed by photo-ionization to very different extents. Our results favor the argument that the common mass M03 reflects a specific scale (circular velocity ~ 20 km/s) for star formation.Comment: 5 pages, 3 figures. References added, discussion enlarged, new version of Figure 3. Minor changes to match the version accepted for publication on ApJ Letter

    Halo Shapes, Dynamics and Environment

    Full text link
    In the hierarchical structure formation model cosmic halos are supposed to form by accretion of smaller units along anisotropic direction, defined by large-scale filamentary structures. After the epoch of primary mass aggregation (which depend on the cosmological model), violent relaxation processes will tend to alter the halo phase-space configuration producing quasi-spherical halos with a relatively smooth density profiles. Here we attempt to investigate the relation between halos shapes, their environment and their dynamical state. To this end we have run a large (L=500h1L=500 h^{-1} Mpc, Np=5123N_{p}=512^3 particles) N-body simulation of a flat low-density cold dark matter model with a matter density Ωm=1ΩΛ=0.3\Omega_{\rm m}=1-\Omega_{\Lambda}=0.3, Hubble constant H=70H_{\circ}=70 km s1^{-1} Mpc1^{-1} and a normalization parameter of σ8=0.9\sigma_{8}=0.9. The particle mass is mp7.7×1010h1Mm_{\rm p}\ge 7.7\times 10^{10} h^{-1} M_{\odot} comparable to the mass of one single galaxy. The halos are defined using a friends-of-friend algorithm with a linking length given by l=0.17νˉl=0.17\bar{\nu} where νˉ\bar{\nu} is the mean density. This linking length corresponds to an overdensity ρ/ρmean200\rho/\rho_{\rm mean}\simeq 200 at the present epoch (z=0z=0) and the total number of halos with more than 130 particles (M>3×1013h1MM>3 \times 10^{13} h^{-1} M_{\odot}) is 57524.Comment: To be published in "Groups Of Galaxies In The Nearby Universe", held in Chile, December 2005, edited by I.Saviane, V.Ivanov and J.Borissova. Springer-Verlag series "ESO Astrophysics Symposia

    Evolution of the Dark Matter Phase-Space Density Distributions of LCDM Halos

    Full text link
    We study the evolution of phase-space density during the hierarchical structure formation of LCDM halos. We compute both a spherically-averaged surrogate for phase-space density (Q) and the coarse-grained distribution function f(x,v) for dark matter particles that lie within~2 virial radii of four Milky-Way-sized dark matter halos. The estimated f(x,v) spans over four decades at any radius. Dark matter particles that end up within two virial radii of a Milky-Way-sized DM halo at z=0z=0 have an approximately Gaussian distribution in log(f) at early redshifts, but the distribution becomes increasingly skewed at lower redshifts. The value corresponding to the peak of the Gaussian decreases as the evolution progresses and is well described by a power-law in (1+z). The highest values of f are found at the centers of dark matter halos and subhalos, where f can be an order of magnitude higher than in the center of the main halo. The power-law Q(r) profile likely reflects the distribution of entropy (K = sigma^2/rho^{2/3} \propto r^{1.2}), which dark matter acquires as it is accreted onto a growing halo. The estimated f(x, v), on the other hand, exhibits a more complicated behavior. Although the median coarse-grained phase-space density profile F(r) can be approximated by a power-law in the inner regions of halos and at larger radii the profile flattens significantly. This is because phase-space density averaged on small scales is sensitive to the high-f material associated with surviving subhalos, as well as relatively unmixed material (probably in streams) resulting from disrupted subhalos, which contribute a sizable fraction of matter at large radii. (ABRIDGED)Comment: Closely matches version accepted for publicatio

    The formation of ultra-compact dwarf galaxies and nucleated dwarf galaxies

    Full text link
    Ultra compact dwarf galaxies (UCDs) have similar properties as massive globular clusters or the nuclei of nucleated galaxies. Recent observations suggesting a high dark matter content and a steep spatial distribution within groups and clusters provide new clues as to their origins. We perform high-resolution N-body / smoothed particle hydrodynamics simulations designed to elucidate two possible formation mechanisms for these systems: the merging of globular clusters in the centre of a dark matter halo, or the massively stripped remnant of a nucleated galaxy. Both models produce density profiles as well as the half light radii that can fit the observational constraints. However, we show that the first scenario results to UCDs that are underluminous and contain no dark matter. This is because the sinking process ejects most of the dark matter particles from the halo centre. Stripped nuclei give a more promising explanation, especially if the nuclei form via the sinking of gas, funneled down inner galactic bars, since this process enhances the central dark matter content. Even when the entire disk is tidally stripped away, the nucleus stays intact and can remain dark matter dominated even after severe stripping. Total galaxy disruption beyond the nuclei only occurs on certain orbits and depends on the amount of dissipation during nuclei formation. By comparing the total disruption of CDM subhaloes in a cluster potential we demonstrate that this model also leads to the observed spatial distribution of UCDs which can be tested in more detail with larger data sets.Comment: 8 pages, 8 figures, final version accepted for publication in MNRA
    corecore